

☑ Fully Digital-control Industrial & Heavy-duty Welding Equipment

MEGMEET Welding Technology Powering the Future

CONTENTS

01 The Enterprise

- 01 Company Profile
- 03 Global Footprints
- 05 Core Business
- 07 Research and Development
- 09 Production Capacity
- 11 Honors & Awards
- 13 Product Philosophy

02 Products & Solutions

03 Applications and Cases

- 15 Application in Professional Welding
- 17 Product Market Performance
- 19 Selection List
- 21 Welding IoT SMARC
- 25 Artsen II
- 33 Artsen Plus
- 43 Artsen Pro
- 49 Dex
- 55 Artsen CM500C
- 59 Ehave CM
- 62 Robotic and Automatic Welding
- 69 Cooling-unit
- 71 Product Competitiveness

- 81 Construction Machinery
- 83 Mining Machinery
- 85 Ship-building & Marine Engineering
- 87 Shipping Container
- 89 Automotive
- 91 Construction
- 93 Commercial Vehicles
- 95 Vessels and Tanks
- 97 Railway


01/02 About MEGMEET

Company Profile

Pioneering Collaboration Openness Innovation Established in 2003, MEGMEET Electrical Co. Ltd. (Stock Code: 002851.sz) is a China National Hightech Enterprise focusing on power electronics and industrial control technology and engaging in the R&D, manufacturing, sales and services of hardware, software and system solutions in the field of electrical and industrial automation. Headquartered in Shenzhen, China, the company has operations in over 40 countries and employs 5,200+ employees. We are committed to improving energy efficiency with the purpose of empowering the world to increase productivity while reducing environmental impact, and thus changing the life of human beings and the environment for the better.

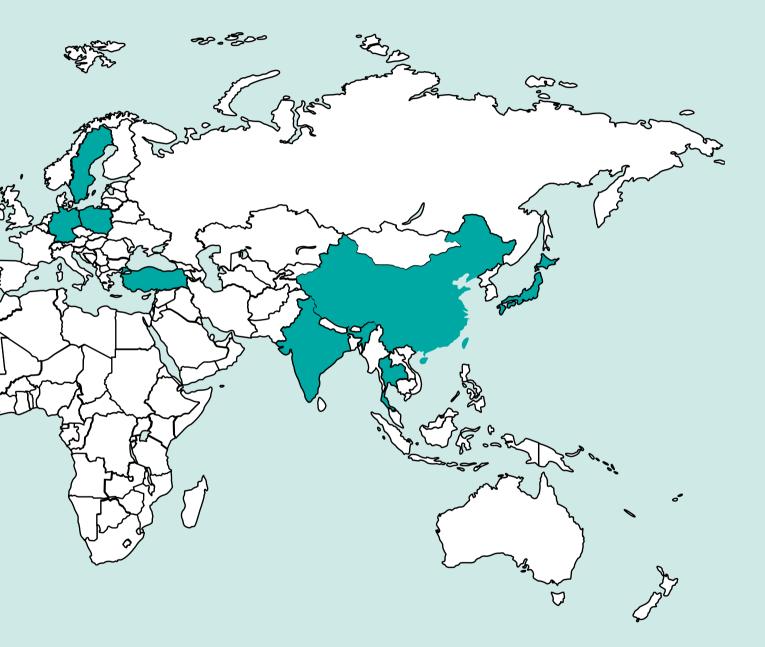
MEGME

MEGMEET operates in the business segments of industrial automation, electrical vehicles & rail transit, smart home appliances and high-end intelligent manufacturing. We serve various industries, including but not limited to healthcare, telecommunication, IT, electricity, transportation, photovoltaics, oil exploration, police equipment, industrial welding, industrial microwave, inverter air-conditioning, inverter microwave, commercial display screens and smart sanitary ware etc. Our products are sold in over 40 countries around the globe, including countries of high technology criteria like the U.S.A., Germany, Japan, Sweden, South Korea, etc.

Technological innovation has been at the core of MEGMEET since its inception and has fueled the growth of the company. MEGMEET has been investing heavily in R&D with yearly spending equivalent to over 10% of its annual sales revenue. The company employs 1000+ R&D engineers, creates comprehensive and well-equipped software and hardware platforms to develop, test and manufacture products. By the end of 2020, MEGMEET has 597 patent grants. The company has established a global R&D network with locations in Sweden, Germany, and in the Chinese cities of Shenzhen, Xi' an, Wuhan, Changsha, Zhuzhou and Taizhou. Manufacturing facilities are located domestically in the cities of Zhuzhou, Taizhou, Zibo, Heyuan and abroad in India and Thailand.

In an effort to provide better products and services to our customers, MEGMEET has restructured its welding division and transformed it into a subsidiary named MEGMEET Welding Technology Co. Ltd., With integrated multidisciplinary knowledge and technologies, MEGMEET redefines the standards for reliability and stability of inverter welding equipment to provide our customers with more efficient, more reliable, more energy-saving and smarter welding machines. MEGMEET has built a reputation as a trustworthy supplier with its quality products and services and has become one of the preferred brands of industrial welding equipment in the market.

Global Footprints


J

è Che

Ľ

MEGMEET

Core Business

MEGMEET

MEGMEET's powerful multidisciplinary platform integrated with technology and engineering enables us to serve our global customers with industry expertise, quality products and optimal solutions.

Innovation for the Future

Smart Manufacturing

- O Industrial & Digital-control Welding Equipment
- Industrial Microwave System
- © Electric Submersible Oil Pumping System
- © Optical Fiber Flexible Bend Sensor

Industrial Power Supply

- Power Supply for ICT
- © Electric Power Supply
- \odot Power Supply for Medical Devices
- © Power Supply for Industrial Microwave
- © Customized Power Supply for Industries

Research and Development

MEGMEET'S relentless pursuit of innovation is best reflected in our R&D efforts. The company invests more than 10% of its sales revenue in R&D each year and has developed innovative cutting-edge technologies, leading laboratories and a team of industry experts around the world. Equipped with unique insights into industry outlook and a deep understanding of customers' needs, MEGMEET is in a position to address customers' needs with competitive products in a fast and accurate way.

Efficient & Stable R&D Team

Technological Innovations led by staff holding Master and PhD Degrees

R&D Centers & Institutes

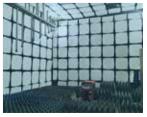
- ◎ Shenzhen R&D Center ◎ Zhuzhou R&D Center ◎ Changsha Institute ◎ Wuhan Institute
- O Xi'an Institute ◎ Hangzhou R&D Center ◎ Taizhou R&D Center ◎ Germany Institute O Sweden Institute

R&D investment equivalent to 10% of our sales revenue

Leading Technological Platform

Professional Testing Laboratories

- O Environmental Testing Laboratory
- ◎ IPX1-9K Laboratory
- \bigcirc 15P Enthalpy Difference Laboratory



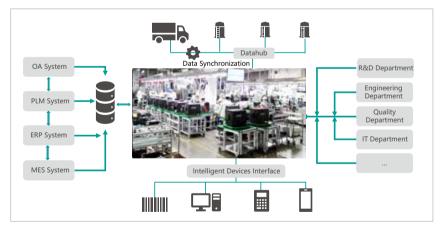
Electromagnetic Interference LaboratoryAging Chamber

- \bigcirc Salt Spray Testing Laboratory

Design Verification Laboratory
 Power Test Laboratory for EV
 Lightening & Surge Testing Laboratory

- \bigcirc Power Grid Simulation Laboratory
- $\ensuremath{\bigcirc}$ Temperature & Humidity Laboratory
- \bigcirc Vibration Test Laboratory

Production Capacity



Production capacity up to USD 1.5 Billion

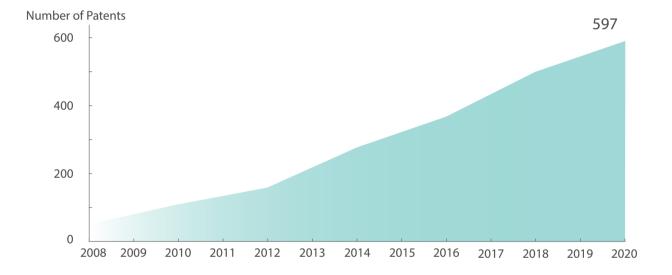
Factory Digitalization

MEGMEET owns several production facilities around the world, among which the Zhuzhou Industrial Park is the global manufacturing center for the company's electronic products. Manufacturing digitalization has been implemented in Zhuzhou Industrial Park to provide life cycle management for all products.

Manufacturing Process

Manufacturing Facilities

Manufacturing facilities have been established in different countries to improve customer responsiveness.



Honors & Awards

- O China National High-tech Enterprise
- \bigcirc Guangdong Smart Power Engineering Technology Center
- Shenzhen Municipal R&D Center (Technology)
- O MEGMEET-Texas Instrument Joint Laboratories
- ◎ Shenzhen Narrow-gap Welding Technology Laboratory

- © Guangdong Pilot Enterprises for Industrialization & Informatization Management System
- ◎ Shenzhen Intellectual Property Advantageous Enterprises
- O MEGMEET-Onsemi Joint Laboratories
- O Shenzhen Nanshan Top-100 taxpayers
- O Shenzhen Nanshan High-level Innovative Talents Training Center
- \odot First Asian"CRAW Certification and Testing Center"designated by AWS

MEGMEET is committed to continuously meeting and exceeding customers' expectations, to steadily increasing investment in R&D, and to consistently innovating to stay ahead of its competition.

International Management Standard Certification

 \bigcirc ISO9001(Quality certification)

"

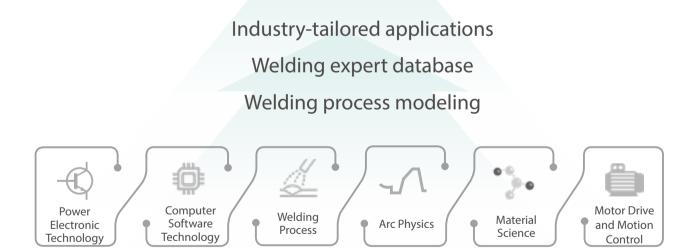
- ◎ ISO14001(Environment certification)
- \bigcirc ISO13485(Medical certification)
- \bigcirc IATF16949(Certification for automobile industry)
- ◎ TL9000(Certification for communication industry)

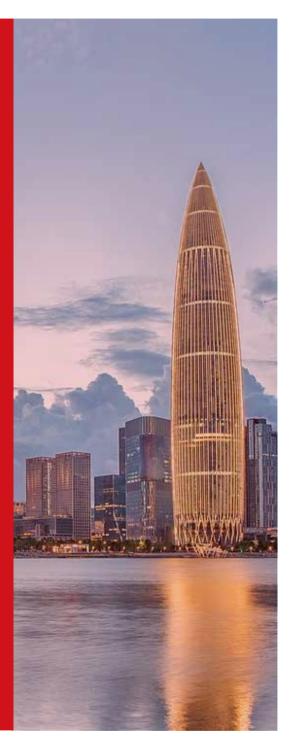
Three-phase Verification


- \bigcirc Verification of sourcing items
- \bigcirc Validation in product development
- \bigcirc Testing of materials in mass production

Product Certification for Different Markets

Business Philosophy


We strive to become a trusted and preferred partner to our customers by delivering highly reliable welding products and solutions.



High-performance Digital-control Welding Equipment

MEGMEET's cross-border integration of multidisciplinary and engineering technologies

Application in Professional Welding & Key Industries

Automotive & Railway

- CRRC
- BYD Auto
- Wuling Faurecia
- Yutong
- CIMC
- Fuwa
- SAIC
- JBM (India)
- DIT Holding
- NANFU Aluminum
- Q J MOTOR
- Loncin
- Sheng Run Automobile
- Sunhunk
- Hong Tai
- Yate Auto

Construction & Mining Machinery

- SANY
- XCMG
- ZOOMLION
- Sunward
- LIUGONG
- ZMJ
- CRCHI (CRRC)
- NFLG
- Schwing Stetter
- SD-Gold
- MESDA

Ship-building & Marine Engineering

- CSSC
- CNOOC
- CIMC Raffles
- DAMEN
- ZPMC
- COSCO
- Yangzijiang
- New Times Shipbuilding
- New Dayang Shipbuilding (SUMEC)
- Xiang Yu
- CSE (Chiwan Sembaowang Engineering)

Heavy Steel Construction

- CSCEC
- Hong Lu Steel Structure
- BSB (Broad Sustainable Building)
- Bo Rui Heavy Traffic Equipment
- Fu Huang
- Jing Gong
- Hang Xiao Steel Structure
- Dong Fang Steel Structure

Shipping Container & others

- CIMC
- FUWA
- OCCL
- Midea
- TBEA
- State Grid Corporation of China
- CXIC
- Hangyang
- JZNEE
- Zhongwang
- CHINALCO (CSCEC)
- China Southern Power Grid
- BTW Electric

.....

Product market performance

Selection List

		Арр	olicable	Metal / (Consumat	oles		Weldin	g Process			Feature	d Welding	g Process	5	
Product Series	Page No.	Steel / Solid Wire	SUS	Alum- inum Alloy	AlSi CuSi (1.2mm)	Metal- cored	MAG / CO2	FCAW	Pulse MIG / MAG	MMA	Tranquil Fusion	Thunder Fusion	Leaping Fusion	DP Fusion	LSA	QPT [3]
Artsen II CM 500 / 400 / 350	25	•					•	•		•						
Artsen II PM 500 / 400 F	25	•			0		•	•	•	•						
Artsen II PM 500 / 400 N	25	٠	•		0		•	•	•	•						
Artsen II PM 500 / 400 AS	25	•	•	•	0		•	•	[1]	•						
Artsen II PM 500 / 400 AD	25	•	•	•	0		•	•	•	•						
Artsen Plus 500 / 400 / 350 D	33	•	•				•	•			•		0	0		
Artsen Plus 500 / 400 / 350 P	33	٠	•				•	•	•		•	•	0	0		
Artsen Plus 500 / 400 / 350 Q	33	•	•	•			•	•	•		•	•	0	0		
Artsen Pro 500 H / 500 / 400 D	43	٠	•				•	•							•	
Artsen Pro 500 H / 500 / 400 P	43	•	•				•	•	•	-		•			•	
Artsen Pro 500 H / 500 / 400 Q	43	•	•	•			•	•	•			•			•	
Dex DM 3000 / DM3000 S	49	٠	•				•			•					•	
Dex PM3000 / PM3000 S	49	•	•	•			•		•	•						
Dex PM3000 Q / PM3000 QS	49		•	•		•	•		•	•					•	•
Artsen CM500 C	55	•					•	•		•						
Ehave CM500 H / 500 / 400 / 350	59	•					•	•		•						

[1] : Double pulse MIG/MAG for aluminum alloy is not available with Artsen II PM500/400 AS;

[2] : Intermediate wire-feeder and push-pull torch are only applicable with Euro connector.

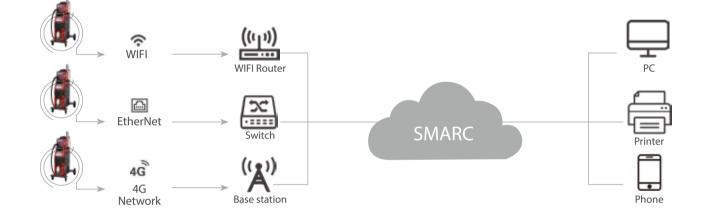
[3]: QPT: Quick Pulse Technology. Welding speed of pulse MIG/MAG reaches 2 times of the standard pulse MIG/MAG. It lowers the sensitivity to shield gas for stainless steel welding.

	Commun	ication wi	th Robot & Au	Itomation		Featured Functions					
EtherNetIP	EtherCAT	ProfiNet	Analog & Automation	DeviceNet	CANOpen	SMARC IoT	Constant Penetration	Up/Down Torch	Intermediate Wire-feede [2]		Digital Meter on Wire-feeder
0	0	0	0	0	0	0		0	0	•	٠
0	0	0	0	0	0	0	•	0	0	•	•
0	0	0	0	0	0	0	•	0	0	•	•
0	0	0	0	0	0	0	•	0	0	•	•
0	0	0	0	0	0	0	•	0	0	•	•
0	0	0	0	0	0	0				•	•
0	0	0	0	0	0	0	•			•	•
0	0	0	0	0	0	0	•			•	•
0	0	0	0	0	0	0				•	•
0	0	0	0	0	0	0	•			•	•
0	0	0	0	0	0	0	•			•	٠
0	0	0	0	0	0						
0	0	0	0	0	0						•
0	0	0	0	0	0						•
						0					•
			0			0					

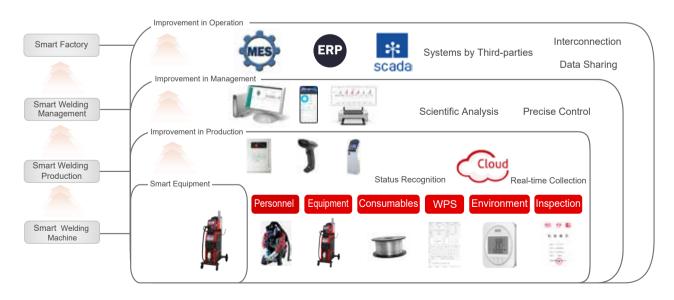
21/22 Products & Solutions

MEGMEET

SMARC[™] Informatization and IoT Solution for Smart Welding Manufacturing

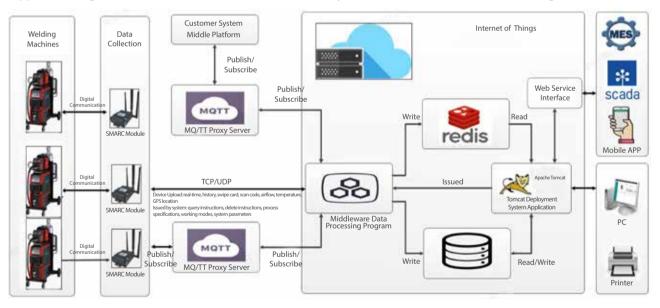

SMARC Informatization and IoT Solution for Smart Welding Manufacturing

Supporting Smart Manufacturing for the Industries.



23/24 Products & Solutions

Smart Welding Manufacturing and Solutions



Informatization and IoT Solution for Smart Welding Manufacturing

Friendly Openness

MEGMEET SMARC System has an open data interface, which can be interconnected with MES, ERP and other systems, and supports welding machines of different brands to connect to the system to realize interconnection of all-thing.

Data Security

In the information age, security of customer data has become more and more important. MEGMEET adopts a comprehensive encryption technology on the system side to ensure the security of customer information and MEGMEET can sign confidentiality agreements with customers.

C E 💩 ERI 🔍

Artsen II CM/PM Series

Product Features

- Digital Microprocessor Controlled Inverter Technology.
- Synergic control of MIG/MAG/C02 process, Pulse / Double Pulse MIG/MAG.
- Stable welding with stick-out length up to 30mm.
- Standard locking function for both front panel locking & parameters range locking.
- Standard Job saving features (up to 50 Job).
- Supporting SMARC for networking.
- Supporting Up/Down torch.
- Supporting Push-pull torch.
- MIG Brazing function as optional.
- Convenient for building multi-operator system.
- Proven record in heavy industries since 2014.
- High tolerance against input voltage fluctuation (25%+/-).
- Superior reliability with self-protecting design and error code display for easy maintenance.

Excellent Welding Performance

This series of products are equipped with a control process of "special energy controlled short-circuit transition", a droplet transfer control process of "pulse energy adjustment", and a synergic pulse energy control process based on varying wire feeding speeds, being suitable for carbon steel, stainless steel, and aluminum alloys and other high-quality welding, etc.

27/28 Products & Solutions

	Standard
*	Optional with extra co
	Not Applicable

Artsen II PM500 / 400 AD

- Synergic / Pulse / Double Pulse MAG for Carbon Steel and Stainless Steel

- Pulse & Double Pulse MIG for Aluminum and alloy

DC CO ₂ /MAG	Standard Pulse
🗹 Steel	☑ Stainless Steel
🗹 Aluminum / Aluminu	m Alloy
💌 Aluminum Bronze	\star Silicon Bronze

Push-pull Welding Torch Interface

Constant Penetration

Mid-drive Wire Feeding Interface

Artsen II PM500 / 400 AS

- Synergic / Pulse / Double Pulse MAG for Carbon Steel and Stainless Steel

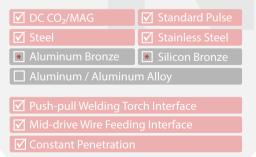
- Single Pulse MIG for Aluminum and alloy

DC CO ₂ /MAG	✓ Standard Pulse
☑ Steel	✓ Stainless Steel
🗹 Aluminum / Aluminu	m Alloy
\star Aluminum Bronze	\star Silicon Bronze

- Push-pull Welding Torch Interface
- Mid-drive Wire Feeding Interface
- Constant Penetration

Artsen II PM500 / 400 F

- Synergic & Pulse MAG for Carbon Steel


DC CO ₂ /MAG	Standard Pulse				
☑ Steel	Stainless Steel				
💌 Aluminum Bronze	 Silicon Bronze 				
🔲 Aluminum / Aluminum Alloy					

✓ Push-pull Welding Torch Interface
✓ Mid-drive Wire Feeding Interface

Constant Penetration

Artsen II PM500 / 400 N

- Synergic / Pulse / Double Pulse MAG for Carbon Steel and Stainless Steel

Artsen II CM500 / 400 / 350

- Synergic MAG for Carbon Steel

✓ DC CO₂/MAG	Standard Pulse				
☑ Steel	Stainless Steel				
Aluminum Bronze	Silicon Bronze				
🔲 Aluminum / Aluminum Alloy					
✓ Push-pull Welding Torch Interface					

✓ Mid-drive Wire Feeding Interface

Constant Penetration

Specification

Artsen II

Manual	Artsen PM500/400 AD	Artsen II PM500/400 AS
Robotic *	Artsen II PM500 / 400 AD R	Artsen ll PM500 / 400 AS R
Process		
Synergic MAG / CO₂	•	•
Single & Double Pulse MAG for Steel	•	•
Single & Double Pulse MAG for SUS	•	•
Single Pulse MIG for Aluminum	•	•
Double Pulse MIG for Aluminum	•	-
Silicon bronze	0	0
Aluminum bronze	0	0
Constant Penetration	•	•
Functions		
Push-pull Torch	0	0
Middle-drive wire feeding	0	0
Up/Down Torch	0	0
SMARC / IoT	0	0

Manual	Artsen PM500 AD / AS / N / F	Artsen CM500					
Robotic	Artsen PM500 AD / AS / N / F R	Artsen CM500 R					
Control Mode	Fully Digital-control						
Rated Input Voltage	AC 3PH 380V -25% ~ 400V +	AC 3PH 380V -25% ~ 400V +20% (3PH 285V ~ 3PH 475V)					
Input Frequency	30 ~	80 Hz					
Rated Input Power	24KVA / 22.3KW	24KVA / 22.3KW					
Power Factor	0.	93					
Efficiency	87	7%					
Rated OCV	73	.3V					
Max Output Current	50	500A					
Rated Output Current	39V						
Rated Output Voltage	$12 \sim 45 \mathrm{V}$						
Duty Cycle (40°C / 10 min)	500A / 39V 60% @ 40°C 387A / 33.5V 100% @ 40°C						
Wire Diameter	φ 0.8 / 0.9 / 1.0 / 1.2 / 1.6 mm						
Welding Operation Mode	2T / 4T / Special 4T / Spot We	elding / Intermittent Welding					
Electromagnetic Compatibility	EN 60974	-10: 2014.					
Protection Against Lightening	Class D (60	00V/3000A)					
Insulation Grade	I	Н					
Ingress Protection	IP2	23 S					
Working Temperature / Humidity	-39°C∼ +40°C						
Dimension (L / W / H)	620mm*300mm*480mm						
Gross Weight	52	KG					

Artsen II

Manual	Artsen PM500 / 400 N	Artsen PM500 / 400 F	Artsen CM500/400/350
Robotic *	Artsen PM500 / 400 N R	Artsen PM500 / 400 F R	Artsen CM500/400/350 R
Process			
Synergic MAG / CO ₂	•	•	•
Single & Double Pulse MAG for Steel	•	•	-
Single & Double Pulse MAG for SUS	•	-	-
Single Pulse MIG for Aluminum	-	-	-
Double Pulse MIG for Aluminum	-	-	-
Silicon bronze	0	0	-
Aluminum bronze	0	0	-
Constant Penetration	•	•	-
Functions			
Push-pull Torch	0	0	0
Middle-drive wire feeding	0	0	0
SMARC / IoT	0	0	0
Up/Down Torch	0	0	0

Artsen PM400 AD / AS / N / F	Artsen CM400	Artsen CM350				
Artsen PM400 AD / AS / N / F R	Artsen CM400 R	Artsen CM350 R				
	Fully Digital-control					
AC 3PH 380V -25% ~ 400V +20% (3PH 285V ~ 3PH 475V)						
$30 \sim 80 \ { m Hz}$						
19.7KVA / 18KW	15 KVA / 12.7KW	15 KVA / 12.7KW				
0.94	0.93	0.93				
87%	87%	87%				
73.3V	73.3V	73.3V				
400A	400A	400A				
34V	31.5v	31.5v				
$12 \sim 45 \mathrm{V}$	$12 \sim 45 V$	$12\sim45V$				
400A 100% @ 40℃	350A 100% @ 40℃	350A 100% @ 40℃				
	φ 0.8 / 0.9 / 1.0 / 1.2 / 1.6 mm					
2T / 4T / Specia	al 4T / Spot Welding / Intermitte	ent Welding				
_	EN 60974-10: 2014.					
	Class D (6000V/3000A)					
н						
IP23 S						
$-39^{\circ}\text{C} \sim +40^{\circ}\text{C}$						
620mm*300mm*480 mm						
	52KG					
	AC 3PH 380V 19.7KVA / 18KW 0.94 87% 73.3V 400A 34V 12 ~ 45V 400A 100% @ 40°C	Fully Digital-control AC 3PH 380V -25% ~ 400V +20% (3PH 285V ~ 30 ~ 80 Hz 30 ~ 80 Hz 19.7KVA / 18KW 15 KVA / 12.7KW 0.94 0.93 87% 87% 73.3V 73.3V 73.3V 73.3V 400A 400A 34V 31.5v 12 ~ 45V 12 ~ 45V 400A 100% @ 40°C 350A 100% @ 40°C 2T / 4T / Special 4T / Spot Welding / Intermittee EN 60974-10: 2014. Class D (6000V/3000A) H H 1P23 S -39°C ~ +40°C 620mm*300mm*480 mm				

Standard Optional

31/32 Products & Solutions

Product Features:

- Capability to work with push-pull torches by major torch manufacturers with easy connection and onebutton selection in internal menu.
- Welding current (wire-feeding speed) and voltage (arc-length correction) adjustable from push-pull torch body.
- Widely used in welding aluminum for large work pieces.

Up/Down Torch Control and Connection

- Up/Down Control of Current
- Up/Down Control of Voltage

Intermediate Wire-feeder

Mid-way Reinforcement for Ultra-Long Wire-feeding

Product Features

- Light and small, weighing only 4.3kg; robust and durable with metal structure streamline design for frequent mobility.
- Digital display for convenient checking and configuration of welding parameters.
- Reaching up to 58 m working scope for solid wires of steel, including 30m by wire-feeder, 25 m by the Intermediate wire-feeder and 3 m by the torch.
- Low cost in welding consumables by allowing working with ordinary welding torch.
- Widely applicable for conditions of long distance and narrow space, such as large tanks, shipbuilding and large steel construction.

Specification

Specification					
Package List Power cable set; Control cable set (10 pin); Gas hose, water hose, liner.					
Size of Power Cable	Standard: 50mm; Customized: 70mm;				
Welding Current (50mm Cable)	60%@380A, 100%@300A				
	Solid wire of Carbon Steel	25m			
Max Cable Length of	Solid wire of Stainless Steel	25m			
Intemediate Wire-feeder	Flux-cored wire of Carbon Steel	15m			
	Alluminum and Alloy	10m			
Motor Voltage	DC 24V				
Wire-Feeding Speed	1.5 ~ 24 m/min				
Intermediate-Drive Wire Feeder Weight	4.3 Kg				
A/V Display	Yes				
Configuration Function	Yes				
Locking-up Function	Yes				

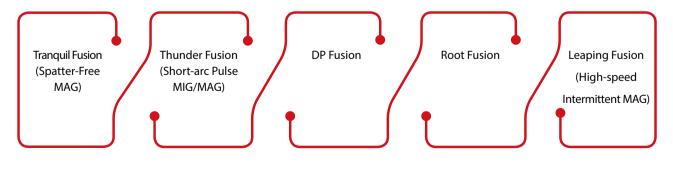
A Series 🛛 🔪

<image>

Artsen Plus Series Intelligent Platform of MIG/MAG Welding Process

Artsen Plus Series

Intelligent Platform of MIG/MAG Welding Process



Features

- Based on the robust Artsen series, Artsen Plus is elevated with inverter frequency of 100K HZ, super high-speed samplying
 and highly precise control.
- Applying worm gear motor of high torque and low inertia, and the highly precise code wheel of 120 lines and the HF motor control system. Start-up, braking and withdrawal at millisecond level are reached. Withdrawal at both the arc ignition and ending stage are controlled precisely. Together with the welding parameter control, optimum arc ignition and crater performance are gained.
- A stable and comprehensive hardware platform of high speed. The open software system makes it possible to expand process control program for different welding conditions and collect expert database, meeting continuously updating process demands from customers.
- Capable of multiple welding processes, as well of combination and switch between different process in order to face the changing welding challenges.
- Equipped with USB port for upgrading, ensuring access to the most advanced welding process developed by MEGMEET and the most suitable welding software to face different welding conditions.
- Capable to work with multiple industrial robots thru multiple robotic protocol.

Advanced Welding Process of Artsen Plus Series

Artsen Plus is capable of multiple welding modes, and provides more suitable welding solution for welding of higher efficiency, thinner sheets, thicker plates or more various metal materials.

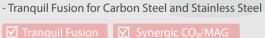
35/36 Products & Solutions

Artsen Plus Series

Artsen Plus 500Q / 400Q / 350Q

- Tranquil Fusion for Carbon Steel and Stainless Steel.
- Thunder Fusion for Aluminum, Carbon Steel and Stainless Steel

✓ Tranquil Fusion	☐ Tranquil Fusion		
✓ Thunder Fusion	✓ Leaping Fusion		
✓ DP Fusion			
Steel 🗹 Stainle	ess Steel 🗹 Aluminum		
☑ Constant Penetration ☑ USB Port			
Push-pull Torch Connector			


Artsen Plus 500P / 400P / 350P

- Tranquil Fusion for Carbon Steel and Stainless Steel - Thunder Fusion for Carbon Steel and Stainless Steel

Tranquil Fusion	☑ Synergic CO₂/MAG
✓ Thunder Fusion	💌 Leaping Fusion
* DP Fusion	
Steel 🗹 Stainle	ess Steel

- Constant Penetration USB Port
- ✓ Push-pull Torch Connector

Artsen Plus 500D / 400D / 350D

Thunder Fusion	\star Leaping Fusion
DP Fusion	

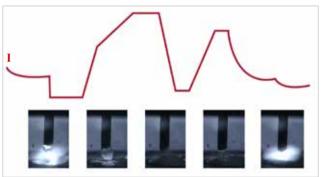
Steel 🗹 Stainless Steel 🗌 Aluminum

✓ Constant Penetration
 ✓ USB Port
 ✓ Push-pull Torch Connector

```
Standard

Optional with extra costs
```

Not Applicable


Tranquil Fusion

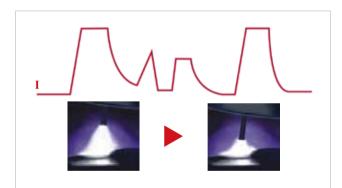
Using the patented monitoring and control technology in droplet formation, with the highly sensitive Tranquil Fusion module and the energy-releasing technology in the power source, MEGMEET achieved precise control of the droplet formation and transfer. At the transfer moment of each droplet, welding current is controlled to be a extremely low level. As a result, the droplet moves into the melton pool peacefully without spatter from explosion. The waveform also lowered the heat-input substantially.

Features in Welding Process:

- Soft welding arc with tranquil welding pool and superbly low spatter.
- The welding energy is subject to adjustment. Heat input can be effectively reduced
- Remarkable welding junction with lowered defects of blowhole and undercut. Suitable for high quality root welding at all wedling positions.
- The welding speed is significantly increased

Automotive parts Spatter-free and low heat-input

Automotive parts Stainless steel


Two-wheeler parts Low heat-input and strong in gap-filling

✓ Thunder Fusion

Shot-circuit transfer was added into waveform of the standard pulse process. It is a superb combination of synergic and pulse welding process together with their advantages, and achieving better results with short welding arc.

Features in Welding Process:

- Welding with lowered voltage to achieve spatter-free and beautiful results with pulse process
- Short in transfer arc, higher in transfer frequency, stronger in anti-interference capability
- More friendly to robotic welding with high arc stiffness and sharp arc direction
- · Heat-input lowered to avoid defects like under-cut
- Deposition rate increased
- Welding spatter is eliminated. Welding process becomes well controlled

Standard Pulse

Thunder Fusion

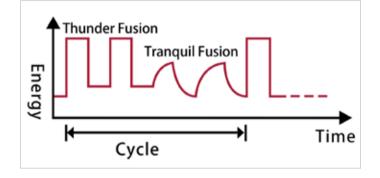
Heavy construction equipment

Spatter-free with Thunder Fusion

Energy

High-speed welding with antiinterference capability

Welding aluminum and alloys


Higher quality in aluminum welding


DP Fusion

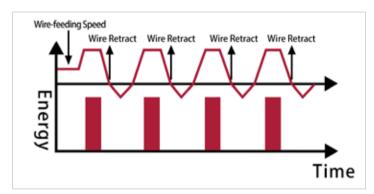
Using short-circuit and pulse welding waveform together but at high-frequency and stable alternate switching. Welding arc periodically heats and cools the base material, and effectively reduces heat-input. It is a welding method that combines short-circuit and pulse transfer, which requires precise control of welding power source and waveform

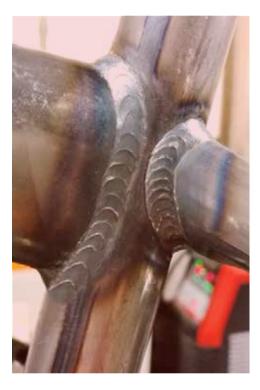
Features in Welding Process:

- Highly applicable for vertical-up welding without weaving
- Highly suitable for full-position welding of plates over 2.5 mm, especially with robotics and welding automation
- More precise control of heat-input and welding formation. The internal expert menu is highly open for configuration, and enables precisely control of the parameters such as the alternating frequency, duty cycle, peak value and base value
- Obvious changes in energy. Fast in welding cycle. Achieving clear fish-scale results even in carbon steel and stainless steel

All-position welding

Vertical-up welding without weaving


X



Perfectly integrating the welding process, arc physics, power source technology of high dynamic response and motor control technology. Each time a macroscopic molten pool is formed during the welding process, the welding wire is drawn back at high frequency while the current is sharply reduced to quickly complete a spot welding. The cycle repeats itself, which is more efficient than the traditional spot-welding

Process characteristics:

- The welding arc starts quickly, and ends sharply. The molten-pool can be formed fast, with extremely low heat input and deformation
- 2-3 times faster than traditional spot welding, while achieving clear fishscale welding appearance
- High tolerance over in-consistent cutting results. Very suitable for welding of gaps and at all-position
- Suitable for the bicycle industry where fish-scale results are requested for carbon steel

It benefits welders by ensuring fast access to the latest or any tailor-made welding process by MEGMEET. Welding process could be shared and down-loaded from online into a USB, and used thru the port for upgrading

When the base material is uneven and the stick-out length changes, the power-source automatically adjust instantly the wire-feeding speed, and prevent the melting depth from being affected by the changing stick-out length. Welding quality is therefore improved

Process characteristics:

- The welding arc has high dynamic characteristics and stability, stable penetration, and high quality
- Suitable for automated welding by robots and special machines

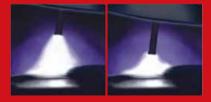
Artsen Plus Wire-feeders

	Enclosed-type	Light-weight type
Drive control mode	Photoelectric encoder feedback / Counter electromotive force	Counter electromotive force
Rated current	4.5A	4.5A
Rated voltage	24V	24V
Wire-feeding speed	0.8 \sim 24 m / min	$0.8\sim$ 24 m / min
Wire diameter	0.8 ~ 1.6	$0.8 \sim 1.6$
Wire-spool	All standard wire reel	All standard wire reel
Drive and roller	4-rollers	4-rollers
Torch connectors	Euro (standard) / Japanese (optional)	Japanese (optional) / Euro
Dimension (L / W / H)	630*250*400	519*200*370
Gross weight	14.5	9.6

41/42 Products & Solutions

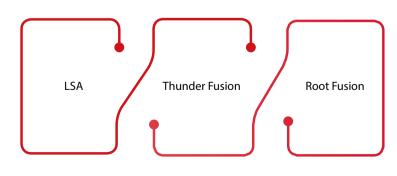
Specification

Artsen Plus

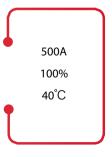

Manual	Artsen Plus 500 / 400 / 350 Q	Artsen Plus 500 / 400 / 350 P	Artsen Plus 500 / 400 / 350 D
Robotics	Artsen Plus 500 / 400 / 350 Q R	Artsen Plus 500 / 400 / 350 P R g Process	Artsen Plus 500 / 400 / 350 D
Synergic			•
Franquil Fusion			
Fhunder Fusion	•	•	-
eaping Fusion	•	0	0
DP Fusion	•	0	-
	Ma	terial	
iteel	•	•	•
itainless Steel	•	•	•
Aluminum	•	-	-
	Featured	d Function	
JSB for Upgrading	•	•	•
Consistent Fusion	•	•	-
Push-pull torch connection	•		
Relay wire-feeder for barrel	<u> </u>	0	0
A / V display in manual wire-feeder			
/lanual	Artsen Plus 500 D / P / Q	Artsen Plus 400 D / P / Q	Artsen Plus 350 D / P / Q
obotics	Artsen Plus 500 D / P / Q R	Artsen Plus 400 D / P / Q R	Artsen Plus 350 D / P / Q R
Control Mode	Fully Digital-Control		
lated Input Voltage 1		380V -25% ~ 400V +10% (3PH 285V ~ 3	
Rated Input Voltage 2	-	-	AC 3PH 220V +/-15% (3PH 187V ~ 3PH 254V)
nput Frequency		$45\sim 65 Hz$	
Rated Input Power	24KVA / 22.3KW	16KVA / 14KW	15KVA / 12.7KW
Power Factor	0.93	0.94	0.94
fficiency		87%	
Rated OCV		85V	
Nax Output Current	500A	400A	350A
ated Output Current	$30\sim500~{\rm A}$	$30\sim400~{\rm A}$	$30\sim350\mathrm{A}$
ated Output Voltage		$12 \sim 45 V $ (Precision at 0.1V)	
Duty Cycle (40°C / 10 min)	500A / 39V 60% @ 40°C 387A / 33.5V 100% @ 40°C	400A / 34V 100% @ 40°C	350A / 33.5V 60% @ 40°C 270A / 27.5V 100% @ 40°C
Vire Diameter	φ 0.8 / 1.0 / 1.2 / 1.6 mm		
Velding Operation Mode	2T / 4T / Special 4T / Spot Welding / Intermittent Welding		
lectromagnetic Compatibility	EN 60974-10 EMC		
rotection Against Lightening		Class D (6000V/3000A)	
nsulation Grade		Н	
ngress Protection		IP23 S	
Vorking Temperature / Humidity		-39°C ~ +50°C ; Humidity ≤ 95%;	
Dimension (L / W / H)		620mm*300mm*480mm	
	57.5Kg	57.5Kg	53Kg

<image>

Artsen Pro Series Intelligent Platform of MIG/MAG Welding Process


Artsen Pro Series

Intelligent Platform of MIG/MAG Welding Process


Features

- Artsen Pro series was developed on the basis of the Artsen Plus series. It has meet the demand of high efficiency welding, especially for thick plates.
- Power source of 500A 100% is available for Artsen Pro series.
- With inverter technology of frequency as high as 100K HZ and high-speed sampling, Artsen Pro achieves precise control, and is flexible with various welding characteristics.
- Artsen Pro series brings LSA, a featured low-spatter welding process, as standard. Thunder Fusion is also available with Artsen Pro for the advanced short-arc pulse and double pulse MIG/MAG.
- · Artsen Pro series meets high quality welding of carbon steel, stainless steel and aluminum alloys.
- Equipped with Constant Fusion, which allows wire-feeding speed at pulse mode to change automatically according to the stick-out length, and keeps the penetration stabilized.
- · Capable to work with multiple industrial robots thru multiple robotic protocols.
- · Anti-interference capability, especially convenient for welding automation of multiple torches.
- Equipped with USB port for upgrading, ensuring access to the most advanced welding process developed by MEGMEET and the most suitable welding software to face different welding conditions.
- Artsen Pro brings various wire-feeders to meet different welding applications at different markets of different budget levels.

Advanced Welding Process of Artsen Pro Series

Heavy-duty Power Source

45/46 Products & Solutions

Artsen Pro Series

Artsen Pro 500H Q / 500Q / 400Q /350Q

- LSA for Carbon Steel and Stainless Steel.

- Thunder Fusion for Aluminum, Carbon Steel and Stainless Steel
 LSA
 Synergic CO₂/MAG
- ✓ Thunder Fusion

🗹 Steel 🗹 Stainless Steel 🗹 Aluminum

Constant Penetration USB Port

Push-pull Torch Connector

Artsen Pro 500H P / 500P / 400P / 350P

- LSA for Carbon Steel and Stainless Steel

- Thunder Fusion for Carbon Steel and Stainless Steel

🗹 LSA	🗹 Synergic CC
7 Thunder Fusion	

Steel 🗹 Stainless Steel 🔲 Aluminum

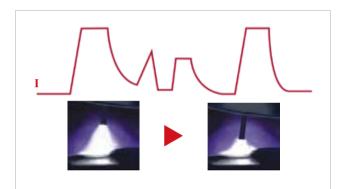
Constant Penetration USB Port

Push-pull Torch Connector

Artsen Pro			
500H D / 500D / 400D / 350D			
- LSA for Carbon Steel	and Stainless Steel		
🗹 LSA	Synergic CO₂/MAG		
Thunder Fusion			
Steel Stainle	ess Steel		
Constant Penetrat	tion 🗹 USB Port		
✓ Push-pull Torch Connector			

Standard

Storal with extra costs


Not Applicable

A Thunder Fusion

Shot-circuit transfer was added into waveform of the standard pulse process. It is a superb combination of synergic and pulse welding process together with their advantages, and achieving better results with short welding arc.

Features in Welding Process:

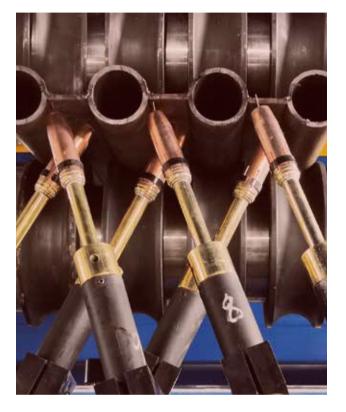
- Welding with lowered voltage to achieve spatter-free and beautiful results with pulse process
- Short in transfer arc, higher in transfer frequency, stronger in anti-interference capability
- More friendly to robotic welding with high arc stiffness and sharp arc direction
- · Heat-input lowered to avoid defects like under-cut
- Deposition rate increased
- Welding spatter is eliminated. Welding process becomes well controlled

Standard Pulse

Thunder Fusion

Heavy construction equipment

Spatter-free with Thunder Fusion


Heavy steel fabrication

High-speed welding of multiple torches

Welding aluminum and alloys

Higher quality in aluminum welding

\mathbf{A} LSA (Low-spatter Arc for MAG / CO₂)

Optimized and upgraded on the basis of standard synergic MIG/MAG, through software-based precise control, the molten droplet of short-circuit transfer is softly disconnected, so that the spatter caused by the traditional liquid bridge explosion and electromagnetic repulsion is reduced. The molten pool is calmer, and the weld formation is more beautiful.

Process Characteristics:

- Accurate in software control for high-frequency short-circuit transfer. Lower in spatter. Lower in heat input. Highly suitable for sheet metal welding
- Soft in welding arc and fine with spatter particles. Less spatter to remain on the workpiece. Lower with rework like grinding after welding. Higher in total working efficiency
- Higher in welding speed. Better in deformation control. More helpful in welding quality

It benefits welders by ensuring fast access to the latest or any tailormade welding process by MEGMEET. Welding process could be shared and down-loaded from online into a USB, and used thru the port for upgrading

When the base material is uneven and the stick-out length changes, the power-source automatically adjust instantly the wire-feeding speed, and prevent the melting depth from being affected by the changing stick-out length. Welding quality is therefore improved

Process characteristics:

- The welding arc has high dynamic characteristics and stability, stable penetration, and high quality
- Suitable for automated welding by robots and special machines

Manual Robotics

Welding Operation Mode

Electromagnetic Compatibility

Protection Against Lightening

Working Temperature / Humidity

Wire Diameter

Insulation Grade

Ingress Protection

Dimension (L / W / H)

Gross Weight

Specificati	on
-------------	----

		Welding Process		
Synergic	•			•
LSA	•			
Thunder Fusion	•			-
Leaping Fusion	-		-	-
DP Fusion	-			-
		Material		
Steel	•			•
Stainless Steel	•			•
Aluminum	•		-	-
	-	Featured Function		
USB for Upgrading	•			•
Consistent Fusion	•			-
Push-pull torch connection	•			
Relay wire-feeder for barrel	0		2	0
SMARC / IoT			0	
A / V display in manual wire-feede				
Manual	Artsen Pro 500 H D / P / Q	Artsen Pro 500 D / P / Q	Artsen Pro 400 D / P / Q	Artsen Pro 350 D / P / Q
Robotics	Artsen Pro 500 H D / P / Q R	Artsen Pro 500 D / P / Q R	Artsen Pro 400 D / P / Q R	Artsen Pro 350 D / P / Q R
Control Mode		Fully Digita	al-Control	
Rated Input Voltage1		AC 3PH 380V -25% ~ 400V +	10% (3PH 285V ~ 3PH 440V)	
Rated Input Voltage2				AC 3PH 220V +/-15% (3PH 187V ~ 3PH 254V)
Input Frequency		$_{45}\sim$	65Hz	
Rated Input Power	24KVA / 22.3KW	24KVA / 22.3KW	16KW / 14KW	15KVA / 12.7KW
Power Factor	0.93	0.94	0.94	0.93
Efficiency		87	%	
Rated OCV	85V			
Max Output Current	500A	500A	400A	350A
Rated Output Current	$30\sim500\mathrm{A}$	$30\sim500~{ m A}$	$30\sim400~{\rm A}$	$30\sim350~{ m A}$
Rated Output Voltage		12 ~ 45 V (Pre	cision at 0.1V)	
Duty Cycle (40°C / 10 min)	500A / 39V 100% @ 40°C	500A / 39V 60% @ 40°C 387A / 33.5V 100% @ 40°C	400A / 34V 100% @ 40°C	350A / 33.5V 60% @ 40°C 270A / 27.5V 100% @ 40°C
			12/11	

φ 0.8 / 1.0 / 1.2 / 1.6 mm

2T / 4T / Special 4T / Spot Welding / Intermittent Welding

EN 60974-10 EMC Class D (6000V/3000A)

> Н IP23 S

-39°C ~ +50°C ; Humidity ≤ 95%;

620mm*300mm*480mm

57.5Kg

Maleline Du

Artsen Pro

Artsen Pro 500 H / 500 / 400 / 350 P R Artsen Pro 500 H / 500 / 400 / 350 D R

Artsen Pro Series

Compact but Powerful and Professional.

Dex Series

(Compact)

Dex Series

Born for sheet metal

Features

- Low spatter arc for carbon steel at synergic MAG mode
- Better performance for SUS at synergic mode
- Short-arc pulse MIG/MAG (QPT) with superb performance for SUS
- Highly easy to use with wide expert database and synergic control
- Power-saving with up to 90% efficiency
- Waveform control at a new level with 180K HZ output frequency
- Better tolerance for minor changes of welding voltage
- Standard Job saving features (up to 50 Job)
- Up to 15m inter-connection cable for more flexibility
- · Highly adaptive for automation with precise control of wire-feeding
- Longer service life and lower defective rate thanks to better mechanical design

51/52 Products & Solutions

Dex Series

\checkmark	Standard
*	Optional with extra co
	Not Applicable

Dex PM3000 (Compact) Dex PM3000S (Separate)

- Spatter-Free Synergic, Pulse and Double Pulse MAG for Carbon Steel and Stainless Steel
- Pulse & Double Pulse MIG for Aluminum and alloy

☑ LSA(Low.spatter Arc for MAG / CO₂)			
☑ Pulse MIG / MAG			MA
💌 QPT (Short-arc pulse MIG / MAG)			
Synergic MAG for Metal-cored wire			
Pulse MAG for Metal-cored wire			
Steel	Stainless St	eel 🗹	Aluminum

Dex DM3000 (Compact) Dex DM3000S (Separate)

- Spatter-Free Synergic MAG for Carbon Steel and Stainless Steel

☑ LSA(Low.spatter Arc for MAG / CO₂)		
Pulse MIC	G/MAG	MMA
💌 QPT (Sho	ort-arc pulse MIG	/ MAG)
Synergic I	MAG for Metal-core	d wire
Pulse MAG for Metal-cored wire		
Steel	Stainless Steel	Aluminum

- Spatter-Free Synergic, Pulse and Double Short-arc Pulse MAG for Carbon Steel and Stainless Steel
- Short-arc Pulse & Double Pulse MIG for Aluminum and alloy

\mathbf{M} LSA(Low.spatter Arc for MAG / CO ₂)				
Pulse MIG / MAG				
▼ *QPT (Short-arc pulse MIG / MAG)				
Synergic MAG for Metal-cored wire				
☑ Pulse MAG for Metal-cored wire				
☑ Steel	Stainless Steel	Aluminum		

\checkmark LSA (Low-spatter Arc for MAG / CO₂)

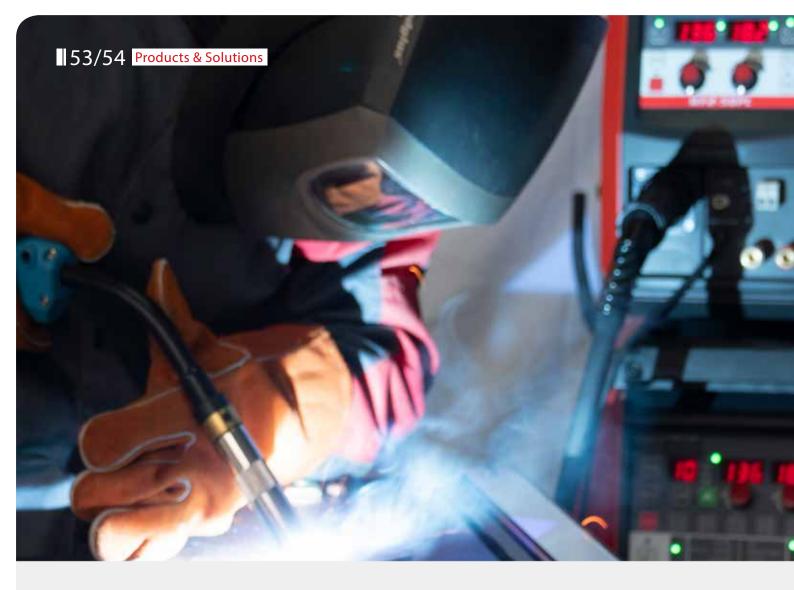
Optimized and upgraded on the basis of standard synergic MIG/MAG, through software-based precise control, the molten droplet of short-circuit transfer is softly disconnected, so that the spatter caused by the traditional liquid bridge explosion and electromagnetic repulsion is reduced. The molten pool is calmer, and the weld formation is more beautiful.

Process Characteristics:

- Accurate in software control for high-frequency short-circuit transfer. Lower in spatter. Lower in heat input. Highly suitable for sheet metal welding
- Soft in welding arc and fine with spatter particles. Less spatter to remain on the workpiece. Lower with rework like grinding after welding. Higher in total working efficiency
- Higher in welding speed. Better in deformation control. More helpful in welding quality

The industry-leading 180 K HZ inverter frequency brings advantages of high-speed sampling and control. Dex can find critical control and balance between short-circuit and spray transfer, and achieve higher transfer speed.

Process Characteristics:


- · Low spatter, low heat-input, suitable for high speed sheet metal welding
- 50%~100% faster than standard pulse MIG/MAG process
- Less sensitive to shield gas composition. Capable of welding SUS solid wire with mixed gas of 80% argon / 20% CO2

Stainless steel

Aluminum alloy

Multiple welding processes

High-speed spot welding

Higher arc-striking success rate. Easier to control. Completing a round and full-sized welding spot in 0.3 seconds.

Stainless steel

Special control program for stainless steel welding. Reduce the sensitivity to pulses welding arc. No complicated parameter matching is required. Applicable with multiple types of shield gas to weld SUS only by adjusting the welding voltage.

Aluminum alloy

Various expert and special programs for aluminum welding. Brand new pulse welding control scheme. The contrast of peak and base current can reach 90%, and therefore enables welders to achieve clear fish-scale welding of aluminum.

Specification

Dex DM/PM

-			1001			102	
Manual - Compact	Dex DM3000	Dex PM3000	Dex PM3000Q	-			
Manual - Decompact	-			Dex DM3000S	Dex PM3000S	Dex PM3000QS	
Robotic	-	-	-	Dex DM3000R	Dex PM3000R	Dex PM3000QR	
			Process				
Synergic MAG / CO ₂	•	•	•	•	•	•	
LSA Pulse MIG / MAG	•			•	•		
QPT	-			-			
MMA	•	•	•	•	•	•	
			Material				
Steel	•	•	•	•	•	•	
Stainless Steel	•	•	•	•	•	•	
Aluminum & Alloy	-	•	•	-	•	•	
Metal-cored Wire	-	-	•	-	-	•	
		-	Specification				
Control mode			Fully Dig	ital-control			
Rated Input Voltage		AC 3P	H 380V -15% ~ 400 V	+15% (3PH 323V ~ 3	PH 460V)		
Input Frequency			45 ~	~ 65Hz			
Rated Input Power			9.2KVA	A / 8.7KW			
Power Factor			C	.94			
Efficiency			9	1%			
Rated OCV			54	4.2V			
Rated Output Current			30A	~300A			
Rated Output Voltage			12V	/~30V			
Parameter channel				50			
Duty Cycle (40°C / 10 min)		100%@207A / 24.9V 100%@217A / 24.9V					
		60%@250A / 28V 60%280A / 28V					
Wire feeding speed			1.4~2	28m/min			
Insulation Grade				Н			
Ingress Protection			IP	23 S			
Protection Against Lightening			Class D (60	000V/3000A)			
		EN60974-10:2014	Ļ				
Certification		EN60974-1:2012 GB/T15579.1-2013			GB/T15579.1-2013		
Working Temperature				~ +40°C			
Dimension (L / W / H)		· · · · · · · · · · · · · · · · · · ·	610mm*26	0mm*398mm			
Gross Weight		25.4kg			23.7kg		
Manual wire-feeder		Built-in Light-weight wire-feeder wire-feeder				e wire-feeder	
					•		
					Ctandard	O Ontional	

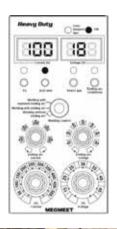
n onraporonaria

Born for Long-reach Welding.

Artsen CM500C

Specially designed for sites and application with super longreach welding such as shipbuilding, marine engineering and steel construction

Pioneer in adapting the Two-way Digital High-speed Carrier-wave Communication Technology


Ar Home Artsen CM500C Cable	Artsen CM500C
Air Hose Others Cable	Others

Product Features:

- Digital Microprocessor Controlled Inverter Technology
- Longer and 30% lighter interconnection cable set up to 100 m
- Stronger inter-connection cable set, better protection, less cable damages, much less down-time
- MAG / CO2 process with synergic control and MMA as standard
- Lighter but more functional wire-feeder for better mobility and easier operation
- Stable welding with stick-out length up to 30mm
- Achieving stabilized vertical-up welding at 150A with flux-cored wire and 50 m inter-connection cable set
- Protection of PCB and wire-feeder from vibration, collision, moisture and salty air
- Superior reliability with self-protecting design and error code display for easy trouble-shooting

Advantages of the Two-way Digital High-speed Carrier-wave Communication Technology

	Communication	Anti-interference Capability	A / V display on the wire-feeder	Reliability in wire-feeder PCBs
Artsen CM500C	the Two-way Digital High-speed Carrier-wave Communication Technology	Excellent	Yes	High
Traditional Carrier- wave Technology	One-way analog carrier- wave technology	Normal	No	Normal

The light-weighted wire-feeder supports A / V display. It also allows setting up of A / V, as well as parameters for starting and crater arc. It brings huge convenience to longreach welding, and saves welders' time.

Industries and Application

Marine engineering

Specification

Atsen CM500C

Parameters		Artsen CM500C			
Control Mode		Fully Digital-control			
Carrier-wave Communication Method	Two-way Digital High-speed Carrier-wave Communication Technology				
Rated Input Voltage	AC	3PH 380V -15% ~ 400 V +15% (3PH 323V ~ 3	3PH 460V)		
nput Frequency		$30\sim 80~{ m Hz}$			
Rated Input Power		24KVA			
Power Factor		0.93			
Efficiency		86%			
Rated OCV		75V			
Rated Output Current		$50\sim500{ m A}$			
Rated Output Voltage		$12\sim 50V$			
Duty Cycle (40°C / 10 min)		500A / 39V 100% @40°C			
Certification		EN 60974-1			
Protection Against Lightening		Class D (6000V/3000A)			
Velding Operation Mode	2T / 4T / Special 4T				
nductance Scope (Soft / Strong Arc)	-9 ~ +9				
Parameter Channel	10 (standard)				
Reserved Communication Interface	CAN				
Cooling Mode	Intelligent air cooling				
Vire-feeder Digital Display	Included, welding parameter can be adjusted remotely				
Vire-feeding Speed		1.4 \sim 24m/min			
nsulation Grade		Н			
ngress Protection		IP23 S			
Norking Temperature		Industrial heavy duty, -39°C \sim +50°C			
Dimension (L / W / H)		620mm*300mm*480mm			
Gross Weight		52kg			
Welding Process	Welding Material	Welding Wire Diameter (mm)	Shield-gas		
	Solid wire / Carbon steel	1.0/1.2/1.6	100% CO ₂		
Synergic CO ₂ & MAG	Solid wire / Carbon steel	1.0/1.2/1.6	80% Ar + 20% CO ₂		
	Flux-cored / Carbon steel	1.2/1.4/1.6	100% CO ₂		
DC MMA	Electrode	2.0 / 2.5 / 3.2 / 4.0 / 5.	0 / 6.0 mm		
Wire-feeder	Standard	Euro	Lite		
Connector	Japanese-type	Euro	Japanese-type		

4-roller

Roller

4-roller



2-roller

Ehave CM Series A classical option for welding carbon steel.

Ehave CM Series

Classic carbon steel welding

Features

- Digital Microprocessor Controlled Inverter Technology
- Synergic control
- Stable welding with stick-out length up to 30mm
- Inter-connection cable set extendable up to 30 m
- Supporting 3-in-1 cable set of high protection
- Standard locking function
- Standard Job saving features (up to 10 Job)
- Supporting SMARC for networking
- Available for 500A 100% @ 40 $^\circ C$ for heavy duty application
- High tolerance with welding condition changes
- Proven record in heavy industries since 2012
- High tolerance against input voltage fluctuation (25%+/-)
- Superior reliability with self-protecting design and error code display for easy maintenance

Specification

Ehave

Manual	Ehave CM500 H	Ehave CM500	Ehave CM400	Ehave CM350		
Robotic	Ehave CM500 H AR	Ehave CM500 AR	Ehave CM400 AR	Ehave CM350 AR		
Control Mode	Full Digital-Control					
Rated Input Voltage	AC 3PH 380V -25% ~ 400V +20% (3PH 285V ~ 3PH 475V)					
Input Frequency		30 -	\sim 80 Hz			
Rated Input Power	24KVA	22.3KVA	16.8KVA	13.5KVA		
Power Factor	0.93	0.93	0.94	0.94		
Efficiency			86%			
Rated OCV	75V	73.3V	63.7V	63.7V		
Rated Output Current	$30\sim 500 { m A}$	$30\sim 500 { m A}$	$30 \sim 400 \mathrm{A}$	$30{\sim}400{ m A}$		
Rated Output Voltage	$12\sim45V$	$12\sim45V$	$12\sim 38V$	$12\sim 38V$		
Duty Cycle (40°C / 10 min)	500A 100% @ 40°C	500A 60% @ 40°C 390A 100% @ 40°C	400A 100% @ 40°C	350A 60% @ 40°C 271A 100% @ 40°C		
Applicable Material		Cark	oon Steel			
Welding Process		CO2 / MAG	G / FCAW / MMA			
Wire Diameter	φ 1.0 / ΄	1.2 / 1.6 mm	φ 0.8 / 1	.0 / 1.2 mm		
Welding Operation Mode		2T / 4T / Repeat	ed 4T / Spot Welding			
Parameter Channel		10 (5	Standard)			
Inductance Scope (Soft / Strong Arc)		-9) ~ +9			
Communication with Robot Controller	Analog					
Reserved Communication Interface			CAN			
Cooling Mode		Intellig	ent Air Cool			
Wire-feeding Speed			24 m/min			
Certification			60974:1			
Protection Against Lightening			5000V/3000A)			
Wire feeding speed		1.4 ~	24m/min			
Insulation Grade			Н			
Ingress Protection			P23 S			
Working Temperature		-39°C ~+50°C	C;Humidity ≤ 95%			
Dimension (L / W / H)		620mm*3	00mm*480mm			
Gross Weight	55kg	52kg	48kg	48kg		

Welding Process	Welding Material	Welding Wire Diameter (mm)	Shield-gas	
	Solid wire / Carbon steel	1.0/1.2/1.6	100% CO ₂	
Synergic CO ₂ & MAG	Solid wire / Carbon steel	1.0/1.2/1.6	80% Ar + 20% CO ₂	
	Flux-cored / Carbon steel	1.2/1.4/1.6	100% CO ₂	
DC MMA	Electrode	Electrode 2.0 / 2.5 / 3.2 / 4.0 / 5.0 / 6.0 mm		

Wire-feeder	Standard	Advance	Euro
Connector	Japanese-type	Japanese-type	Euro
Roller	2-roller	4-roller	4-roller

Robotic and Automatic Welding

Communications Protocols with Industrial Robots

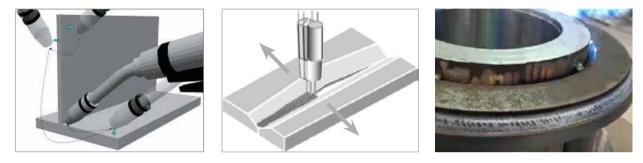
		Communications Protocols with Industrial Robots					Touch-sensing		TACT	
Model	Analog	DeviceNet	EtherNet/IP	EtherCAT	ProfiNet	CANOpen	MEGMEET CAN	54V	5V	- TAST
Ehave	•								•	٠
Artsen II CM / PM	0	0	0	0	0	0	0	٠	٠	٠
Artsen Plus /Pro	0	0	0	0	0	0	0	٠	•	٠
Dex DM/PM	0	0	0	0	0	0	0			•
								Sta	ndard 🔾) Optiona

- For 7 consecutive years since 2014, MEGMEET have been the market leader with the highest share of GMAW (MIG/MAG/CO2) equipment for robotic arc welding in China, the biggest single-country market in the world.
- Capable to communicate with industrial robot and cobot by almost all international or regional manufacturers. Convenient to select robot type thru one click in the internal menu.
- Multiple baud rate built-in, capable of communicating with multiple third-party devices simultaneously.
- 54V for touch sensing, allowing better performance with workpieces with rust, dirt and oily surface.
- Perfectly support TAST (Thru-arc Seam Tracking) function by robots by different manufacturers. Especially suitable for robotic welding of thick plates.
- · High speed inter-communication of welding parameters with robot controller. Highly open with parameter adjustments.
- Supporting push-pull torch for robotic welding. Capable of synchronizing motor torque and speed between the push-pull torch and wire-feeder without extra devices. Capable of driving push-pull torch directly. [1]
- Relay wire-feeder of synchronization optionally available for wire barrels, especially suitable for welding conditions with long wire conduits. [2]

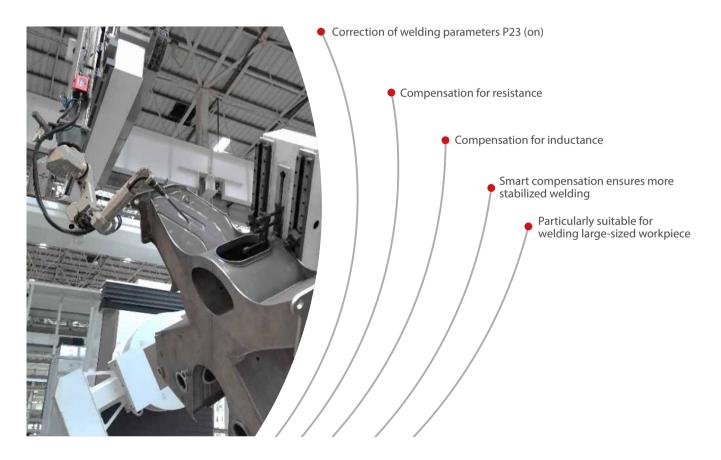
Artsen series and Artsen Plus series supports robotic push-pull torch.
 The relay wire-feeder is only optional for Artsen Plus / Pro series.

Smart Design and Rich Experience in Robotic Arc Welding

- · ABB
- Cobot
- · FANUC
- · KUKA
- · YASKAWA
- · KAWASAKI
- · COMAU



MEGMEET CAN



Functions of Robot Arc Welding

- Touch sensing with high voltage (54V)
- Thru-Arc Seam Tracking (TAST)
- Multi-layer and multi-pass welding

Smart Compensation for Extra Long Cables

Instant Switch between Welding Jobs

Only one arc ignition is needed to achieve rapid switch between different welding jobs. All happens within 0.08 seconds. Welding spatter and possible defects caused by new ignition are avoided. It is particularly suitable for robotic welding under complex conditions

Display of Wire-feeding Resistance

The machine panel can display the "wire feeding resistance coefficient" to remind customers to check if the wire-feeding system is smooth enough so as not to affect the welding quality

Robotic Wire-feeders

Euro-connector (standard)

- Buttons available for fast operation of wire-feeding, wire withdrawing, and gas check for Artsen Plus / Pro
- Switching between mechanisms of encoder feedback and "Opposing electromotance feedback"
- Supporting push-pull torch

Japanese-connector (Optional)

Remote Rontroller

Features:

- Supporting welding automation, convenient adjustment of welding parameters at real-time Synergic control
- Control cable length up to 25m
- * Only optional for Artsen Plus / Pro series

Specification of Robotic Wire-feeders

Model	Euro Connector	Japanese-type Connector	Weight (kg)	Water-cool	Dimension (L / W / H) mm
Artsen II CM/PM Series	Standard	Optional	6.8	Standard	303*170*205
Artsen Plus / Pro Series	Standard	Optional	6	Standard	230*170*170
Ehave Series	Standard	Optional	6.8	-	303*170*205
Dex DM/PMSeries	Standard	Optional	6	Optional	230*170*170

Cooling-unit

Specification

AnyCool-100

For Artsen II CM/PM series, and Artsen Plus / Pro series

Water cooler AnyCool-100			
Power Supply	By welding power source		
Rated Power	260W		
Rated Voltage	380V-400V AC		
Volume of Cooling Water	10L		
Flow Speed	3.5L/min		
Max Pump Head	26m		
Flow Alarm	Yes		

AnyCool-68

For Dex PM3000 / PM3000 Q / PM3000 S / PM3000 QS / PM3000 R

Water cooler AnyCool-68			
Power Supply	By welding power source		
Rated Power	260W		
Rated Voltage	380V-400V AC		
Volume of Cooling Water	6.8L		
Flow Speed	3.5L/min		
Max Pump Head	20m		
Flow Alarm	Yes		

Powering the Future

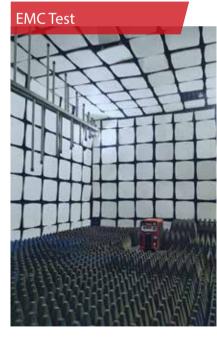
Reliability

Re-defining reliability and stability of inverter welding machines.

Firm and strong like a rock, even being used at outdoors or under tough conditions

Quality

All the imaginable harsh conditions are added on testing the welding machine at the same time. The severity levels are gradually increased, until the welding machine break down. After that, the short-board analysis is performed, and the design is continuously optimized. The process was performed again and again. Test conditions include, but not limited to, full load operation, vibration, high temperature, high humidity, ultra-low temperature, salt spray, conductive dust, power surge, voltage drop, ESD, EFT, etc. The designed product lifetime of the welding power source reaches 10 years after HALT test. It is the highest for arc welding equipment of inverter technologies.


Lightning Protection Test

The industry's unique Class D (6000V/3000A) surge lightning device is used to conduct extreme tests on the welding machine. To ensure stable and reliable work under the conditions of thunder and lightning and large fluctuations in the network voltage of the customer's factory. It avoids "soft damage" to the welder, and greatly extend the life of the welding machines

Conductive Dust Test

Iron powder and graphite powder floating in the air are used as test conditions to ensure that the welding machines are highly reliable under similar harsh working conditions.

Passing EMC Test ensures welding power source not to interfere with other equipment nearby, or to be interfered. It is especially suitable for complex robot welding production line and other intelligent factories.

For the purpose of ensuring MEGMEET products' performance at indoor and outdoor in different countries, this test verifies the stability and reliability of the welding machines' output parameters under high and low working temperatures.

The Salt Spray Test can test the corrosion resistance of the welding machine. Passing this test, the welding machine can be more suitable for the high salinity and high humidity environment such as in the ship-building and marine engineering industries

Make sure that the welding machine can work reliably under the raining situation

These tests examinates the robustness of the whole structure, packaging its components, as well as the workmanship of final assembly. It ensures quality and performance after transportations and falls

Consistency

Consistent performance by any machine, anytime, anywhere

			5V					
PCB#	1	2	3	- 4	5	6	7	8
Current (A)	173.28	172.08	169.84	172.16	173.92	173.12	172.88	171.04
Real Output Voltage	5	4.97	4.91	4.97	5.01	5	5	4.94
Output Voltage Deviation	0	-0.03	-0.09	-0.03	0.01	0	0	-0.06
Displayed Voltage Deviation	0	0.0706	0.0106	0.0706	0.1106	0.1006	0.1006	0.0406
20V								
PCB#	1	2	3	- 4	5	6	7	8
Current (A)	197.2	196.96	198	196.72	196.96	196.64	197.12	196.88
Real Output Voltage	20,06	20.03	20.15	20.01	20.02	19.97	20,04	20.02
Output Voltage Deviation	0.06	0.03	0.15	0.01	0.02	-0.03	0.04	0.02
Displayed Voltage Deviation	0.06	0.03	0.15	0.01	0.02	-0.03	0.04	0.02
			IOV					
PCB#	1	2	3	4	5	6	7	8
Current (A)	1 295, 44	295.12	295.28	294, 88	295, 44	295.2	295, 28	295.12
Current (A) Real Output Voltage	30, 09	295.12 30.06	295.28 30.07	294.88 30.02	295, 44 30, 08	295.2 30.03	295, 28 30, 06	295.12 30.05
Current (A) Real Output Voltage Output Voltage Deviation	30, 09	295.12 30.06 0.06	295.28 30.07 0.07	294.88 30.02 0.02	295.44 30.08 0.08	295.2 30.03 0.03	295, 28 30, 06 0, 06	295, 12 30, 05 0, 05
Current (A) Real Output Voltage	30, 09	295.12 30.06 0.06	295.28 30.07	294.88 30.02	295, 44 30, 08	295.2 30.03	295, 28 30, 06	295, 12 30, 05 0, 05
Current (A) Real Output Voltage Output Voltage Deviation	30, 09	295, 12 30, 06 0, 06 0, 06	295, 28 30, 07 0, 07 0, 07	294.88 30.02 0.02	295.44 30.08 0.08	295.2 30.03 0.03	295, 28 30, 06 0, 06	
Current (A) Real Output Voltage Output Voltage Deviation Displayed Voltage Deviation	30, 09	295.12 30.06 0.06 0.06	295, 28 30, 07 0, 07 0, 07 5V	294, 88 30, 02 0, 02 0, 02	295, 44 30, 08 0, 08 0, 08	295, 2 30, 03 0, 03 0, 03	295, 28 30, 06 0, 06 0, 06	295, 12 30, 05 0, 05 0, 05
Current (A) Real Output Voltage Output Voltage Deviation Displayed Voltage Deviation PCE#	30, 09 0, 09 0, 09	295.12 30.06 0.06 0.06	295, 28 30, 07 0, 07 0, 07 5V 3	294. 88 30. 02 0. 02 0. 02 4	295.44 30.08 0.08 0.08	295, 2 30, 03 0, 03 0, 03 6	295, 28 30, 06 0, 06 0, 06 7	295, 12 30, 05 0, 05 0, 05 8
Current (A) Real Output Voltage Output Voltage Deviation Displayed Voltage Deviation PCE# Current (A)	30, 09 0, 09 0, 09 1 545, 36	295.12 30.06 0.06 0.06 4 2 544.8	295, 28 30, 07 0, 07 5V 5V 3 541, 28	294, 88 30, 02 0, 02 0, 02 4 544, 24	295. 44 30. 08 0. 08 0. 08 545. 6	295, 2 30, 03 0, 03 0, 03 6 544, 8	295, 28 30, 06 0, 06 0, 06 7 544, 88	295, 12 30, 05 0, 05 0, 05 8 546, 24
Current (A) Real Output Voltage Output Voltage Deviation Displayed Voltage Deviation PCE# Current (A) Real Output Voltage	30, 09 0, 09 0, 09 1, 00 1, 0,	295.12 30.06 0.06 0.06 4 2 544.8 45.06	295, 28 30, 07 0, 07 0, 07 5V 541, 28 44, 77	294, 88 30, 02 0, 02 0, 02 4 544, 24 44, 98	295, 44 30, 08 0, 08 0, 08 5 545, 6 45, 09	295.2 30.03 0.03 0.03 6 544.8 45.02	295, 28 30, 06 0, 06 0, 06 7 544, 88 45, 05	295, 12 30, 05 0, 05 0, 05 8 546, 24 45, 12
Current (A) Real Output Voltage Output Voltage Deviation Displayed Voltage Deviation PCE# Current (A)	30, 09 0, 09 0, 09 1 545, 36	295.12 30.06 0.06 0.06 4 2 544.8	295, 28 30, 07 0, 07 5V 5V 3 541, 28	294, 88 30, 02 0, 02 0, 02 4 544, 24	295. 44 30. 08 0. 08 0. 08 545. 6	295, 2 30, 03 0, 03 0, 03 6 544, 8	295, 28 30, 06 0, 06 0, 06 7 544, 88	295, 12 30, 05 0, 05 0, 05 8 546, 24

- Thanks to the design of high-frequency inverter and excellent full digital control, the dependency on the accuracy of hardware parameters are largely lowered. Consistent performance of each welding power source is therefore ensured even under large fluctuation of input power network
- By using components of low temperature drift and high accuracy, the output performance are kept consistently from turning-on to longtime operation, and from -10°C to +50°C working temperature
- Multiple compensations and automatic adjustments are designed for components in the sampling and control section, which ensures the consistency of each machine performance.

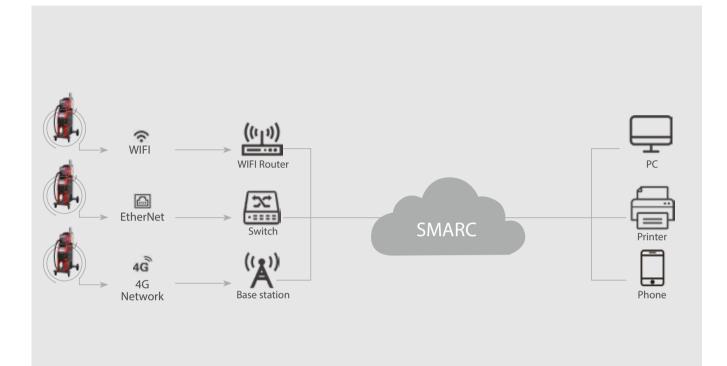
Stability and Reliability

Stability is the cornerstone of intelligent welding machine

Stable as Always

Through leading power electronics and software technology, highfrequency digital sampling, and circuit correction, it's as stable as a new welding machine, whether it's a year, five years, or ten years

Intelligent Adjustment


The stick-out length is changeable when the welding arc reaches a different position. By using the unique technology of compensation on microcosmic welding voltage and of constant arc-length control, MEGMEET power source can ensure the stability of molten pool and welding arc.

Smart Compensation

By adopting the technology of compensation on macroscopic welding voltage, MEGMEET power source is able to prevent arc voltage from decreasing when working with connection cable of 5m or 50m

IoT Capability and Infomatization

Prepared for Industry 4.0 and the era of IoT

External Communication

With many communciation connectors as options, MEGMEET welding systems are well prepared for seamless and digital connection with robot controler, and automatic welding systems

Networking

By using MEGMEET smarc group control system to realize welding informatization, the welding machine can be operated by wifi / 4G / network cable interconnection, and can be interconnected with MES, ERP and other systems

Software Updating

The welding machine is an intelligent hardware platform, which can upgrade the welding process and customize the function by refreshing the software so as to save the cost of purchasing the new machine

User-friendly Design

How to deal with the challenges of inexperienced welding personel? How to ensure the welding quality with a wide range of welder knowledge?

Convenience for New Welders

Anti-shake function: Arc voltage compensation and arc length constant control technology make new welders easier to work

Synergic Control: The welding machine has a massive built-in expert database. Welders only need to input current, and the parameters can be automatically set up

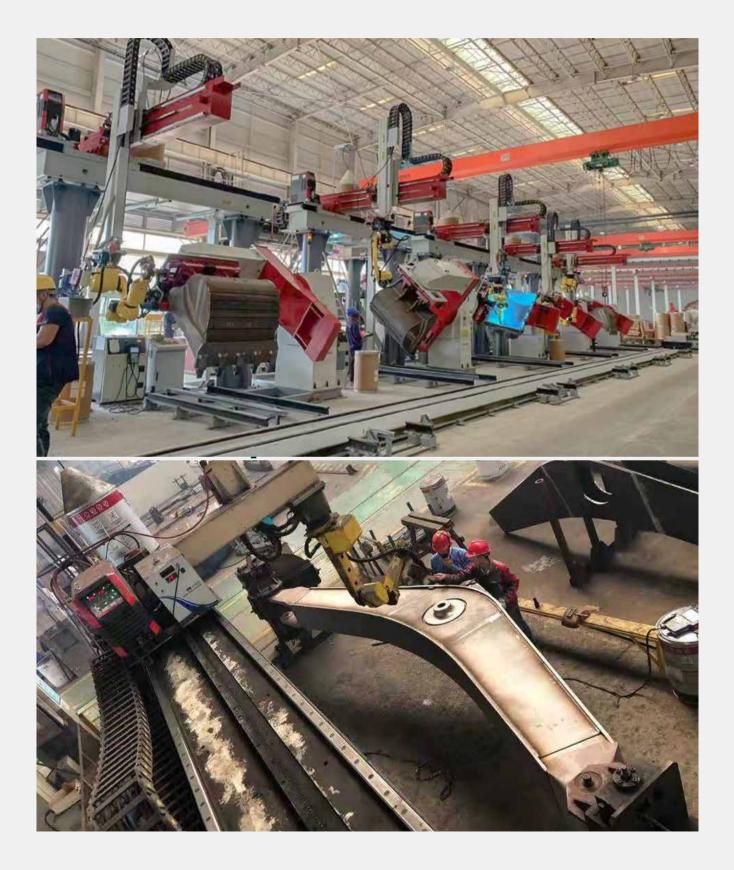
Locking-up Function

Without any external devices, a locking-up password is able to be set up on the front panel. This can ensure welders to use the requested WPS. The cost of management and testing will decrease, while welding quality can be ensured better. ("L" stand for locking, which means the parameter can only be changed within the allowed scope.)

Quick Recovery of Production

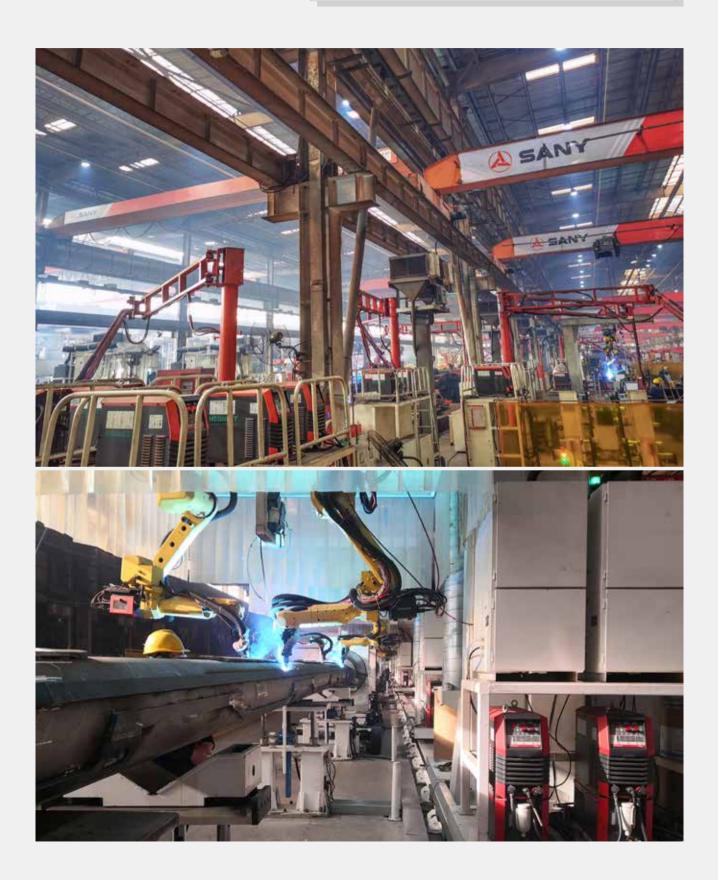
The embedded structure and the modular design increase the reliability. Meanwhile, dismantling and re-assembly will be faster. The welder recognizes by itself and quickly locates faults, and displays the error code as an alarm

66


For over 10 years, we have been devoted to researching the basic disciplines of arc welding and welding engineering application technology. Today, we are highly recognized by the industry. This is due to MEGMEET's strong multidisciplinary technical team, corporate R&D platform and the spirit of innovation. We firmly believe that we can help our customers overcome their challenges in the welding production process, and ensure that customers can focus on their core business other than welding, so that they will stand out.

))

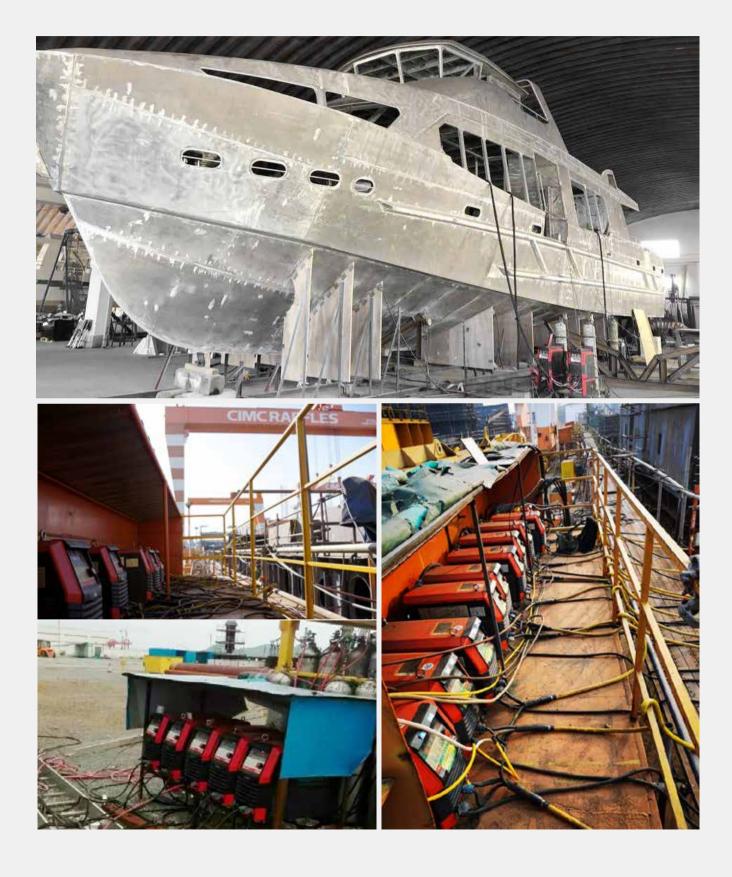
Applications and Cases


81/82 Case

Construction Machinery

83/84 Case

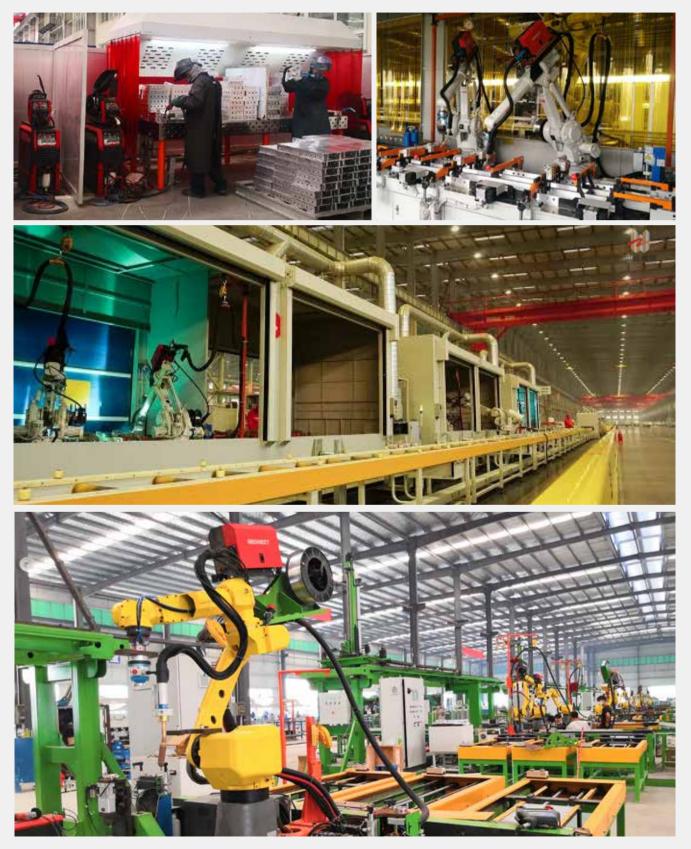
Mining Machinery

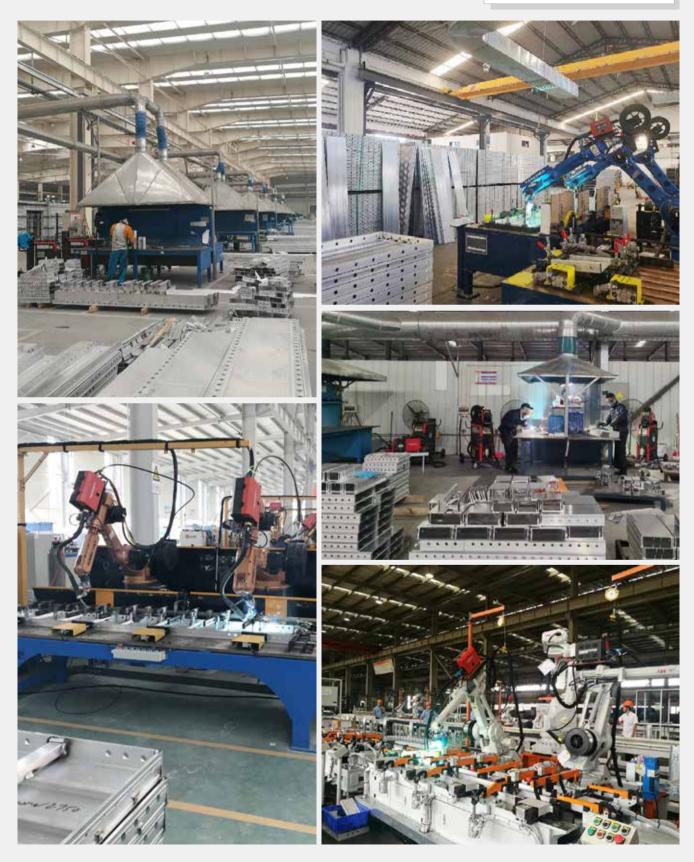


Ship-building & Marine Engineering

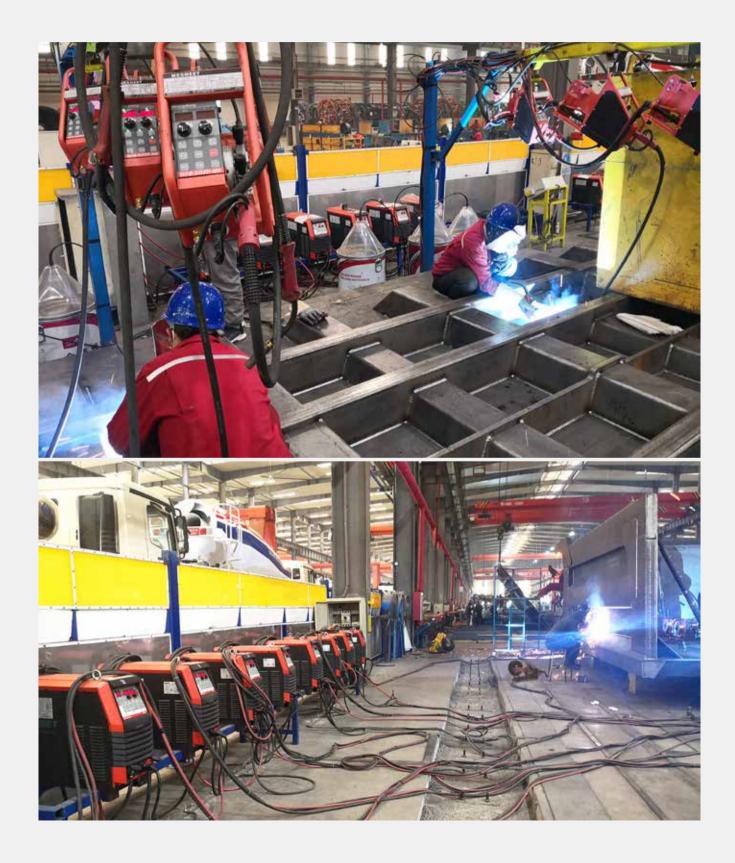
Shipping Container

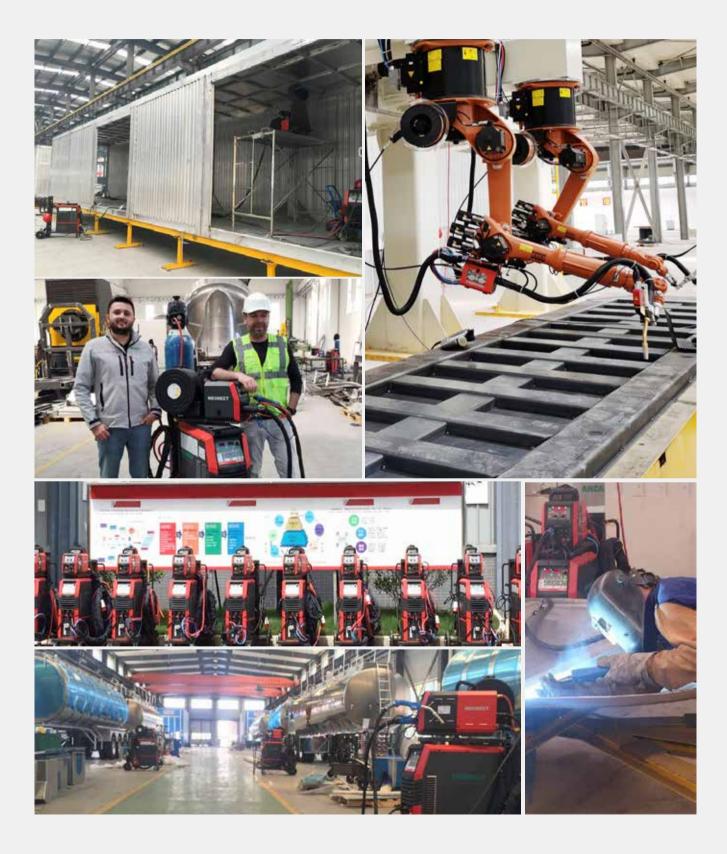
Automotive





Construction



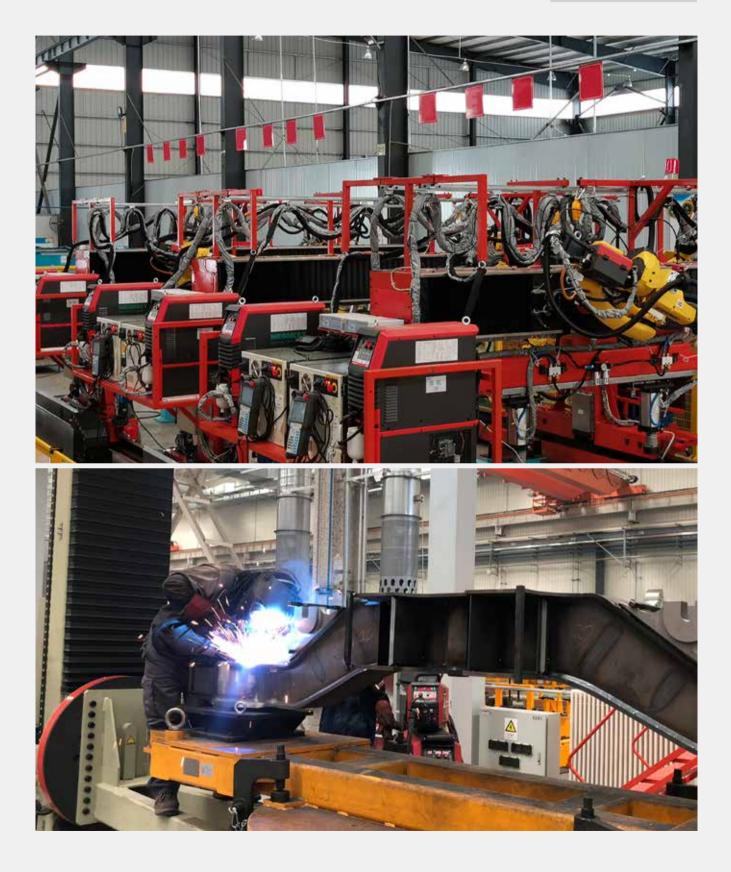

93/94 Case

Commercial Vehicles

95/96 Case


Vessels and Tanks

MEGMEET WELDING TECHNOLOGY


97/98 Case

Railway

Follow us: 🛅

9

MEGMEET Welding Technology Co., Ltd MEGMEET Electrical Co., Ltd

Add: 3rd Floor, Block C Unisplendour Information Harbor, Langshan Road, Shenzhen, Guangdong, 518057, China

www.megmeet-welding.com/en www.megmeet.com

E-mail: welding@megmeet.com

Tel: +86-755-8660 0555

MEGMEET Germany GmbH	MEGMEET Türkiye rtibat Bürosu
Add: Meisenstr. 94, 33607 Bielefeld, Germany	Add: Merkez Mah. Hasat Sok. No:52/1 Şişli - İstanbul
Tel: +49 521 588 131 40	Tel: +90 538 334 94 88
Email: welding@megmeet.com	Email: welding@megmeet.com
MEGMEET Electrical India Pvt Ltd	MEGMEET (Thailand) Co., Ltd
MEGMEET Electrical India Pvt Ltd Add: Plot No. 140, Sector 7, IMT Manesar, Gurugram – 122052, Haryana	MEGMEET (Thailand) Co., Ltd Add: 7/375 Moo 6, Tambon Mabyangporn, Pluak Daeng, Rayong 21140
Add: Plot No. 140, Sector 7, IMT Manesar, Gurugram – 122052,	Add: 7/375 Moo 6, Tambon Mabyangporn, Pluak Daeng,
Add: Plot No. 140, Sector 7, IMT Manesar, Gurugram – 122052, Haryana	Add: 7/375 Moo 6, Tambon Mabyangporn, Pluak Daeng, Rayong 21140

MEGMEET's strong technical strength, extensive industry application experience, relentless attention to customer needs, and the spirit of continuous innovation enable us to bring tailor-made products and solutions to help customers achieve greater success.

*MEGMEET Welding Technology Co., Ltd is continuously striving to develop and innovate for new product. We reserves the right of changing the technical specifications and designs without notices in advance. Copyright 2021 © MEGMEET Welding Technology Co., Ltd